A Remark on Convergence Factor

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Remark on the Gromov Convergence Theorem

In [3] M. Gromov introduced the concept of convergence of Riemannian manifolds and he proved the convergence theorem. Since that time the theorem has been developed in detail (see [5], [7], [2]), and we know that it contains some interesting applications. Nevertheless there seems to be an inadequate way of applying the convergence theorem. The purpose of this paper is to present an example whic...

متن کامل

A Remark on Convergence in Distribution of U-statistics

It is proved that, for h measurable and symmetric in its arguments and Xi i.i.d., if the sequence {n−m2 ∑ i1,...,im≤n ij 6=ik if j 6=k h(Xi1 ,...,Xim )}n=1, is stochastically bounded, then Eh2<∞ and Eh(X1,x2,...,xm)=0 a.s.

متن کامل

Remark on a Reply

1.1 In their original PNAS article Macy and Sato (2002) make it clear that their main point concerns social mobility (see, for instance, the abstract and the last section). Their central claim is the non-monotonic effect of mobility: with moderate mobility, they maintain, trust can be established; with too much mobility, trust and trustworthiness are undermined — and therefore their "warning fl...

متن کامل

A remark on Remainders of homogeneous spaces in some compactifications

‎We prove that a remainder $Y$ of a non-locally compact‎ ‎rectifiable space $X$ is locally a $p$-space if and only if‎ ‎either $X$ is a Lindel"{o}f $p$-space or $X$ is $sigma$-compact‎, ‎which improves two results by Arhangel'skii‎. ‎We also show that if a non-locally compact‎ ‎rectifiable space $X$ that is locally paracompact has a remainder $Y$ which has locally a $G_{delta}$-diagonal‎, ‎then...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Progress of Theoretical Physics

سال: 1954

ISSN: 0033-068X

DOI: 10.1143/ptp.12.809